美国PARKER派克溢流阀调压失灵怎么办?
我公司威斯特(上海)传感器仪表有限公司多年来坚持多品种、多品牌、差异化的发展战略,产品覆盖面较大,产品涉及低压电器、液压气动元件、仪器仪表、以及IT网络产品。公司经过多年的经营,已拥有全国范围的稳定客户群体,也完成了较多具有代表性的系统工程,暂如:DCS控制、高压变频、烟气监测、工业调度、仪表成套等。在上海广东德国美国都有公司,欢迎广大新老客户采购
美国Parker先导式比例溢流阀和磁芯组成,是包含一个或几个孔的阀体。当线圈通电或断电时,磁芯的运转将导致流体通过阀体或被切断,以达到改变流体方向的目的。电磁阀的电磁部件由固定铁芯、动铁芯、线圈等部件组成;阀体部分由滑阀芯、滑阀套、弹簧底座等组成。电磁线圈被直接安装在阀体上,阀体被封闭在密封管中,构成一个简洁、紧凑的组合。我们在生产中常用的电磁阀有二位三通、二位四通、二位五通等。这里先说说二位的含义:对于电磁阀来说就是带电和失电,对于所控制的阀门来说就是开和关。
美国Parker派克RE*W系列先导式比例溢流阀是由一个比例电磁铁操纵的先导级和一个DIN-标准的NG25的插装阀作主级所组成的。依靠电的给定信号可以对压力进行无级地调节。通过外部的电子模块将给定值给予控制系统。对于不同的压力等级在先导阀上使用相应的调节喷嘴。
派克溢流阀的工作原理及分派克溢流阀的用途定压溢流作用:在定量泵节流调节系统中,定量泵提供的是恒定流量。当系统压力增大时,会使流量需求减小。此时溢流阀开启,使多余流量溢回油箱,保证溢流阀进口压力,即泵出口压力恒定(阀口常随压力波动开启)。安全保护作用:系统正常工作时,阀门关闭。只有负载超过规定的极限(系统压力超过调定压力)时开启溢流,进行过载保护,使系统压力不再增加(通常使溢流阀的调定压力比系统zui高工作压力高10%~20%)。作卸荷阀用作远程调压阀作高低压多级控制阀作顺序阀用于产生背压(串在回油路上)。1、直动型溢流阀1)、锥阀式直动型溢流阀锥阀式直动型溢流阀图示为锥阀式直动型溢流阀。锥阀2的左端设有偏流盘1托住弹压弹簧5,锥阀右端有一阻尼活塞3(阻尼活塞一方面在锥阀开启或闭合时起阻尼作用,用来提高锥阀工作的稳定性;另一方面用来保证锥阀开启后不会倾斜)。进口的压力油(压力为P)可以由此活塞的径向间隙进入活塞底部,形成一个向左的液压力F=P·A(A为活塞底部面积)。当作用在底部的液压力F大于弹簧力时,锥阀阀口打开,油液由锥阀口经回流口溢回油箱。只要阀口打开,有油液流经溢流阀,溢流阀入口的压力就基本保持恒定。通过调节杆4来改变调压弹簧5的预紧力Ft,即可调整溢流压力。锥阀开启后,(5-21)式中,K、X0分别为弹簧刚度和预压缩量
美国PARKER派克溢流阀调压失灵怎么办?
溢流阀在使用中有时会出现调压失灵现象。先导型溢流阀调压失灵现象有二种情况:一种是调节调压手轮建立不起压力,或压力达不到额定数值;另一种调节手轮压力不下降,甚至不断升压。出现调压失灵,除阀芯因种种原因造成径向卡紧外,还有下列一些原因:
*是主阀体(2)阻尼器堵塞,油压传递不到主阀上腔和导阀前腔,导阀就失去对主阀压力的调节作用。因主阀上腔无油压力,弹簧力又很小,所以主阀变成了一个弹簧力很小的直动型溢流阀,在进油腔压力很低的情况下,主阀就打开溢流,系统就建立不起压力。
压力达不到额定值的原因,是调压弹簧变形或选用错误,调压弹簧压缩行程不够,阀的内泄漏过大,或导阀部分锥阀过度磨损等。
第二是阻尼器(3)堵塞,油压传递不到锥阀上,导阀就失去了支主阀压力的调节作用。阻尼器(小孔)堵塞后,在任何压力下锥阀都不会打开溢流油液,阀内始终无油液流动,主阀上下腔压力一直相等,由于主阀芯上端环形承压面积大于下端环形承压面积,所以主阀也始终关闭,不会溢流,主阀压力随负载增加而上升。当执行机构停止工作时,系统压力就会无限升高。除这些原因以外,尚需检查外控口是否堵住,锥阀安装是否良好等。
派克(PARKER)溢流阀的噪声和振动
液压装置中容易产生噪声的元件一般认为是泵和阀,阀中又以溢流阀和电磁换向阀等为主。产生噪声的因素很多。溢流阀的噪声有流速声和机械声二种。流速声中主要由油液振动、空穴以及液压冲击等原因产生的噪声。机械声中主要由阀中零件的撞击和磨擦等原因产生的噪声。(1)压力不均匀引起的噪声
先导型溢流阀的导阀部分是一个易振部位如图3所示。在高压情况下溢流时,导阀的轴向开口很小,仅0.003~0.006厘米。过流面积很小,流速很高,可达200米/秒,易引起压力分布不均匀,使锥阀径向力不平衡而产生振动。另外锥阀和锥阀座加工时产生的椭圆度、导阀口的脏物粘住及调压弹簧变形等,也会引起锥阀的振动。所以一般认为导阀是发生噪声的振源部位。
由于有弹性元件(弹簧)和运动质量(锥阀)的存在,构成了一个产生振荡的条件,而导阀前腔又起了一个共振腔的作用,所以锥阀发生振动后易引起整个阀的共振而发出噪声,发生噪声时一般多伴随有剧烈的压力跳动。
(2)空穴产生的噪声
当由于各种原因,空气被吸入油液中,或者在油液压力低于大气压时,溶解在油液中的部分空气就会析出形成气泡,这些气泡在低压区时体积较大,当随油液流到高压区时,受到压缩,体积突然变小或气泡消失;反之,如在高压区时体积本来较小,而当流到低压区时,体积突然增大,油中气泡体积这种急速改变的现象。气泡体积的突然改变会产生噪声,又由于这一过程发生在瞬间,将引起局部液压冲击而产生振动。先导型溢流阀的导阀口和主阀口,油液流速和压力的变化很大,很容易出现空穴现象,由此而产生噪声和振动。
(3)液压冲击产生的噪声
先导型溢流阀在卸荷时,会因液压回路的压力急骤下降而发生压力冲击噪声。愈是高压大容量的工作条件,这种冲击噪声愈大,这是由于溢流阀的卸荷时间很短而产生液压冲击所致在卸荷时,由于油流速急剧变化,引起压力突变,造成压力波的冲击。压力波是一个小的冲击波,本身产生的噪声很小,但随油液传到系统中,如果同任何一个机械零件发生共振,就可能加大振动和增强噪声。所以在发生液压冲击噪声时,一般多伴有系统振 动。
(4)机械噪声
先导型溢流阀发出的机械噪声,一般来自零件的撞击和由于加工误差等产生的零件磨擦。
在先导型溢流阀发出的噪声中,有时会有机械性的高频振动声,一般称它为自激振动声。这是主阀和导阀因高频振动而发生的声音。它的发生率与回油管道的配置、流量、压力、油温(粘度)等因素有关。一般情况下,管道口径小、流量少、压力高、油液粘度低,自激振动发生率就高。
扫码加微信